On upper bounds for Laplacian graph eigenvalues
نویسندگان
چکیده
منابع مشابه
Bounds for Laplacian Graph Eigenvalues
Let G be a connected simple graph whose Laplacian eigenvalues are 0 = μn (G) μn−1 (G) · · · μ1 (G) . In this paper, we establish some upper and lower bounds for the algebraic connectivity and the largest Laplacian eigenvalue of G . Mathematics subject classification (2010): 05C50, 15A18.
متن کاملSharp upper bounds for the Laplacian graph eigenvalues
Let G = (V ,E) be a simple connected graph and λ1(G) be the largest Laplacian eigenvalue of G. In this paper, we prove that: 1. λ1(G) = max{du +mu : u ∈ V } if and only if G is a regular bipartite or a semiregular bipartite graph, where du and mu denote the degree of u and the average of the degrees of the vertices adjacent to u, respectively. 2. λ1(G) = 2 + √ (r − 2)(s − 2) if and only if G is...
متن کاملBounds on normalized Laplacian eigenvalues of graphs
*Correspondence: [email protected] 1School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian, P.R. China 2Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian, P.R. China Full list of author information is available at the end of the article Abstract Let G be a simple connected graph of order n, where n≥ 2. Its normalized Laplacian eigenvalues are 0 = λ1 ...
متن کاملBounds on graph eigenvalues I
We improve some recent results on graph eigenvalues. In particular, we prove that if G is a graph of order n 2; maximum degree ; and girth at least 5; then
متن کاملBounds on graph eigenvalues II
We prove three results about the spectral radius μ (G) of a graph G : (a) Let Tr (n) be the r-partite Turán graph of order n. If G is a Kr+1-free graph of order n, then μ (G) < μ (Tr (n)) unless G = Tr (n) . (b) For most irregular graphs G of order n and size m, μ (G)− 2m/n > 1/ (2m+ 2n) . (c) Let 0 ≤ k ≤ l. If G is a graph of order n with no K2 +Kk+1 and no K2,l+1, then μ (G) ≤ min {
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2010
ISSN: 0024-3795
DOI: 10.1016/j.laa.2009.12.013